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Note 

Double Precision FORTRAN Subroutines to Compute 
both Ordinary and Modified Bessel Functions 

of the First Kind and of Integer Order 
with Arbitrary Complex Argument: JJx + jy) and I,,@ -+ jr)* 

Both ordinary and modified Bessel functions of the first kind and of integer 
order and complex argument arise in many areas of mathematical physics. For 
example, in the field of acoustics the complex Bessel functions JO(x + jy) and 
J,(x +~JJ) occur in the dispersion relation resulting from the steady-periodic 
wave propagation in a compressible viscous liquid contained in a rigid impermeable 
tube waveguide [l]. 

Because of the potentially large numbers involved for complex argument of 
arbitrary modulus and phase, the very rapid oscillation that occurs in various 
regions of the complex plane, and the restrictive asymptotic series that unneces- 
sarily limits the large argument solution space, current computer programs 
restrict the argument of J, and I, to either pure real or complex with smail 
modulus [2]. Thus, it is desirable to relax these limitations and to extend the 
argument into the entire complex domain. This note describes two FORTRAN 
subroutines for calculating in double precision the ordinary and modified Bessel 
functions of the f&t kind and integer order for any point in the complex plane. 

Since J,,(x + ,&I) of large modulus j x + jv / cannot be computed directly under 
certain asymptotic conditions [3, p. 364, Eq. (9.2.5)], it is best to write it in ::erms 
of 1,(x + jy), which has no such problem. 

The ascending series for I,(z) with v and z = x f j~j complex as given by 
Abramowitz and Stegun [3, p. 375, Eq. (9.6.10)] is easily written in the recursive 
form, 

I,(z) = f Tk , Th=- ’ #qk + n) T&I 3 (la, b. c) 
k=O 

with 

c, = g, (2ay b) 

* Performed at the Carnegie-Mellon University, Department of Mechanical Engineering, in 
the course of Ph.D. studies on a National Science Foundation Traineeship and Ford Foundation 
grant to H. A. S. and National Science Foundation Contract GK 2452. 
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where v has been replaced by integer n. Degenerate properties of I,&) that are 
needed in the calculation include: (i) I,(z) is indeterminate at z = 0 [3, p. 375, 
Eq. (9.6.7)] and possesses the values I,(O) = 1 and I jsl ,,(O) = 0; (ii) IJz) exists 
for IZ a negative integer and is given by the relation [3, p. 375, Eq. (9.6.6)] 
I-,(z) = In(z); (iii) In(z) is pure real for either z = x or (z =~JJ and rz even); and 
(iv) I,(z) is pure imaginary for z = jy and 72 odd. 

&L(z) is an entire function of z and, hence, possesses an infinite radius of con- 
vergence. However, for the finite amount of significance available on a digital 
computer, truncation and round-off error effectively reduce the radius of conver- 
gence to a finite value for a prescribed accuracy criterion. Thus, to compute the 
modified Bessel function for a modulus larger than the ascending series effective 
radius of convergence R,,, , an asymptotic series expansion for I,(z) is required. 

The commonly referred to asymptotic series for I,(z) [3, p. 377, Eq. (9.7.1)] 
excludes the case of 1 arg(z)] = ?r/2, and thus cannot be used. Fortunately, IV(z) 
can be written in terms of the more general confluent hypergeometric function of 
the Kummer type. Transforming I,(z) to this form and coupling it with analytic 
continuation will then allow the complete specification of I,(z) for all large moduli. 
I,,(z) written in terms of the Kummer function of the first kind is given as [3, p. 377, 
Eq. (9.6.47)] 

In(z) = (;)” s hf(n + 4, 2rz + 1, 2z), (3) 

where v has been replaced by integer n. 
Substituting the desired asymptotic expansion for the Kummer function of the 

first kind [3, p. 508, Eq. (13.15.1)] into Eq. (3), and again writing the result in 
recursive form, yields the relation 

+ e” IF TV(+) + 0 (-p&)/1 
v=o 

(0 < =-g(z) < 4, 

T"(*) = T"-,(*) (72 + v - M-n + v - $1 
v 

Rtt>, To(&) = 1, 6% b, 4 

with [3, p. 255, Eq. (6.1.12); p. 31 

WI) = & r (72 + ;, = 1 . 3 * 5 ‘in..’ (2n - 1) r(;), 

IQ) = 1.772453850905516027. @a, b, c) 
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Equation (4a) actually is valid in quadrants III and IV, excepting on the negative 
imaginary axis. Because analytic continuation would be required in either case, 
the above overrestriction has been introduced for simplicity. For any z in the 
region (- ?: < arg(z) < 0), use of analytic continuation allows Ii&z) to be computed 
in quadrants I and II by the relation [3, p. 376, Eq. (9.6.30)], 

I,,(zj = cnmjIn(zenj) (-7~ < arg(z) < 0). 

Having computed In.(z), it is now easy to compute Jm(z) from the relation 
[3, p. 375, Eq. (9.6.3)], 

The above relations for J,(z) and In(z) have been programmed for a Univac 1188 
computer using FORTRAN 5. The Univac 1108 carries single precision complex 
numbers to nine place significance and magnitude lO*“8 and double precision real 
numbers to eighteen place significance and magnitude 10*308. After attempting to 
compute I,(z) in single precision complex arithmetic, it was found that not enough 
accuracy could be obtained due to truncation and round-off error. Also, the 
magnitude of the numbers involved tended to be of order 10*60, and so beyond 
the scope of the single precision arithmetic. As no double precision complex 
arithmetic exists for the Univac 1108 software, these numerical difficulties forced 
the writing (in FORTRAN) of a double precision complex arithmetic. 

Three methods were employed to test the accuracy of the above routines. In 
the fust method, the series for l,(z) was substituted into Bessels equation Ll,(t) = E, 
where L. = z(d/&)(z(~J/dz)) - z” - n* and c is an absolute error. E would be 
zero if I,(zj were completely accurate. The second method involved checking the 
values of ITI against known tabular data [3, Table 9; 41. In the third and most 
crucial method, the values of l,,(z) obtained from the ascending series, Eq. (l), 
were compared to those obtained from the asymptotic series, Eq. (4), in the 
annular region where both series are valid. The range of parameters n and 
z = R@ considered in the test program was (iz = O(lQ)l), (R = 0(100)2), and 
(0 = O(h) 7r/12). 

Defining E, to be the modulus of the ratio of the N-th term to the -N-th partial 
sum, and relative error a,,. to be the ratio 1 L1,(z)/ln(z)~, the results of the three 
tests on the ascending series show, for E, of 10-15, a maximum accuracy 6,. of 
lo-l6 for modulus R of 6 or less. The relative error then increased steadily from 
6,. = lo-lo at R = 16, & = 1O-8 at R = 20, 6, = lo-” at R = 30, until finally, 
R = R,, = 40, 6, = 1. The last of these results implies that, due to truncation 
and round-off, the error is of the same order of magnitude as the value of the 
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fimction at this large radius. Thus, for 1 z I > 40, the results of the ascending 
series are rendered meaningless. 

Turning next to the asymptotic series, trial calculation showed that, for 
E, = 10-15, a minimum stable radius Rmin = 16.5 produced a minimum relative 
error 6,. = 10-ll. This error stayed relatively constant over the entire range tested. 
Because of the essential singularity (l/z”), which causes the asymptotic series to 
diverge if a sufficiently large number of terms are included, 6, decreased drastically 
for R less than 16.5. 

Comparison of the two series in the overlapping annular region (R,iU < R< Rmsd 
revealed that the minimum stable error was produced for n = 0 when the ascending 
series were used for moduli less than 18 and the asymptotic series were used for 
moduli greater than 18. This boundary radius for higher n was found to vary 
linearly with IZ according to the relation 

R, = 18 + $1~ (0 < 12 < 10). (8) 

No values of n greater than 10 were tried. Use of Eq. (8) resulted in a minimum 
of 9 decimal place accuracy for the ascending series and 1 I decimal place accuracy 
for the asymptotic series. 

The Bessel functions &(z) and I,(z) were compiled as the subroutines 
JNUZ(N, X, Y, E, F) and INUZ(N, X, Y, E, F), respectively. The above arguments 
are interpreted as E + jF = Jlhr(X + jY) and E + jF = IN(X + jr), respectively. 
Arguments N, X, Y, E, and F are all real double precision numbers. The actual 
program listings for JNUZ, INUZ, and the double precision complex arithmetic 
appear in the dissertation by Scarton [l, pp. 657-6641. Also appearing in this 
work is additional information concerning the calculation method [I, pp. 595-6251. 

As a final note, it should be pointed out that JNUZ and INUZ can be easily 
modified to include complex N. 
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